
Chapter 4

Generalizations of the Erdős–Rényi
random graphs
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Erdős–Rényi random graphs have two incarnations: The first one that we studied in much details is
G(n, p) when the probability of each edge is specified. And the second one is G(n,m) when a fixed
number of edges m is distributed throughout the graph (this we almost did not discuss). The two
models have very similar properties in the case m =

(
n
2

)
p, which can be rigorously proved. These two

models are also important for understanding of two main generalizations of the Erdős–Rényi random
graph: inhomogeneous random graphs and configuration model. In the former case the weights w for
each vertex are specified, and the probability that an edge connects vertices i and j is defined using the
weights wi and wj corresponding to the vertices i and j. This model, which we denote G(n,w), is a
generalization of G(n, p). The second model, which is a generalization of G(n,m), is the configuration
model, when the degrees of each vertex are defined. This will be denoted G(n,d), where d = (d1, . . . , dn)
are a graphical sequence of the vertex degrees. It turns out that these two models have similar properties
when w and d are related, and actually it is enough to carefully analyze one model to transfer the results
onto the other one. Both of these models are capable of producing random graphs with predetermined
degree distribution, that is why they generalize the Erdős–Rényi random graphs, they both are small
worlds, however, there are two main drawbacks of these models. First, the degree distribution is given
as the model parameter and does not appear as an evolved property of the system. A different approach
is to evolve a network, and the preferential attachment model allows exactly this: to produce power law
distribution starting with quite plausible evolutionary graph process. Second, being “very random”, these
models (including the preferential attachment model) do not allow for additional network structure, in
particular their clustering coefficients approach zero as n → ∞. To tackle this obstacle I will finish this
chapter by analyzing a mathematical model of what is conventionally called a small world graph.

4.1 Inhomogeneous random graphs

The first model I consider is the so-called the inhomogeneous random graph model, which is specified by
the number of vertices n and the sequence w = (w1, . . . , wn) of weights of every vertex. I will denote this
model as G(n,w). To be able to prescribe an arbitrary degree distribution to G(n.w), I set the probability
that vertices i and j are connected as

pij =
wiwj∑

k wk + wiwj
.

I can always assume that wi > 0 for all i since otherwise the vertex i is isolated and can be disregarded.

Problem 4.1. Show that if wi = nλ/(n− λ) then G(n,w) becomes G(n, λ/n).

Problem 4.2. Consider an inhomogeneous random graph with n1 vertices with the weights m1 and n2
vertices with the weights m2. Show that the expected degree of the former is approximately m1 and of
the latter is approximately m2 if m2

1 +m2
2 = o(

∑
k wk).

Problem 4.3. In general, if wiwj = o(
∑

k wk) for any i, j then the expected degree of vertex i is

EDi ≈ wi.

Note that the previous problem tells only about the expected degree of a given vertex. It is possible to
prove1 that the degree distribution of a particular picked vertex i is close to a Poisson one with parameter
wi. This implies that it is reasonable to expect that the distribution of degree sequence of G(n,w) is
close to a mixed Poisson distribution, where the mixing function is given by the a probability distribution
function for the random variable W , which is defined in terms on the sequence w.

Recall that a random variable X has a mixed Poisson distribution with mixing distribution F when,
for every k ∈ N

P(X = k) = E

(
e−W W k

k!

)
,

1for all the details see Remco van der Hofstad, Random Graphs and Complex Networks, Vol. I, Chapter 6
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where W is a random variable with distribution function F . In terms of w can be defined as

F (x) = P(X ≤ x) =
1

n

∑
i∈[n]

1{wi≤x}.

There exist a lot of various models that are defined in terms of weights of the vertices. It can be
shown that they are equivalent (in some rigorous sense) when n→ ∞.

Chung–Lu model. In this model the probabilities are taken as

pij =
wiwj∑
k wk

∧ 1,

where a ∧ b means min{a, b}. This model is equivalent to G(n,w) is
∑

k w
3
k = o(n3/2).

Norris–Reittu model of the Poisson graph process. This model is defined as a random graph
process, where at each time t a new vertex is born with the weight wt, and it is connected to any
existing vertex i by the number of edges that have Poisson distribution with the parameter wiwt/

∑
k wk.

Furthermore, at each time each of the older edges is erased with probability wt/
∑

k wk. It turns out that
the number of edges between i and j is a Poisson random variable with parameter wiwj/

∑
k wk. Note

that we essentially deal with a multigraph in this case. However, if the weights are bounded then the
probability that the resulting graph is simple is positive.

Problem 4.4. Calculate this probability.

If one erases all self-loops in the Norris–Reittu graph and merges multiple edges into one, then the
resulting random graph is equivalent to G(n,w).

4.2 Configuration model

Our goal in this section is to formulate a model that produces a uniform random graph with prescribed
degree distribution.

4.2.1 Definition. Basic properties

Assume that the vector d = (d1, . . . , dn) is graphical, i.e., there exits a graph on n vertices such that vertex
1 has degree d1, vertex 2 has degree d2, and so on. We would like to generate a random graph having
exactly prescribed degree sequence d. To accomplish this goal we consider 2m half-edges, 2m =

∑
i∈[n] di,

where [n] = {1, 2, . . . , n}, of our graph and perform a random matching of these half-edges. I will denote
the resulting model G(n,d).

Problem 4.5. Show that among 2m half-edges there are

(2m− 1)!! = (2m− 1)(2m− 3) . . . 3 · 1

possible matchings.

If we perform uniform pairing of half-edges, then we obtain a random graph with exactly the degree
sequence d, which is a realization of the configuration model G(n,d) with degree sequence d.

Here are some basic properties of the configuration model.

• The outcomes of the configuration model are multigraphs, since self-loops and multiple edges are
possible while performing random matching of the half-edges.
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• The name configuration model comes from the construction of another graph: Assume that we have
2m vertices and perform uniform pairing of them, the result is called configuration.

• We can identify a graph G ∈ G(n,d) with the matrix (xij)i,j∈[n], where xij is the number of edges
connecting vertices i and j, and xii is the number of self-loops of the vertex i. We have

di = xii +
∑
j∈[n]

xij ,

where xii is counted twice, since each self-loop adds two to the vertex degree.

• The probability that we observe the multigraph G = (xij)i,j∈[n] is

P({G ∈ G(n,d)}) = 1

(2m− 1)!!

∏
i di!∏

i 2
xii
∏

1≤i<j≤n xij !
,

where we have to account the facts that random permutations of the half-edges adjacent to some
vertices produce the same graphs, and permutations of half-edges that contribute to self-loops and
multiple edges should not be counted, since these are the same matchings.

This formula shows that the probability distribution on the configuration model is not uniform (it
is outcome dependent). However, the same formula shows that conditioned on the event that G is
simple, we obtain a uniform distribution.

• It is usually more convenient to deal with the sequence nk, which is the number of vertices of degree
k, then with d. We have pk = nk

n is the degree distribution of our the configuration model. Having
(pk)

∞
k=0 we can speak of a “random variable” D (actually, there is no random variable, the sequence

d is deterministic) which takes its values on G(n,d). Note that

2m =
∑
i

di =
∑
k

knk = n
∑
k

kpk = nED,

where ED is the average degree. Similarly, we can define ED2 =
∑

k k
2pk =

∑
i
d2
i

n . Usually we
assume that the degree distribution is such that both ED and ED2 are defined and finite.

The fact that outcomes of the configuration model are multigraphs is not very disappointing because
it can be fixed in two ways. First, after a random graph is produced, self-loops and multiple edges can be
erased. The important fact is that the degree distribution of the obtained simple graph converges to the
fixed at the beginning degree distribution of D. We show this by starting with the following proposition.

Proposition 4.1. Let Mn, Sn be the random variables that denote the number of multiple edges and
self-loops in G(n,d) respectively. Then

ESn ∼ ν

2
, EMn ≤ ν2

4
,

where

ν =
ED2 − ED

ED
=

E(D)2
ED

.

Proof. Consider the events

τ ist = { half-edge s is paired with half-edge t, both belonging to vertex i }.

Then
Sn =

∑
i∈[n]

∑
1≤s≤t≤di

1τ i
st
,
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which implies

ESn =
∑
i∈[n]

∑
1≤s≤t≤di

P(τ ist) =
1

2

∑
i∈[n]

di(di − 1)P(τ i12)

=
1

2

∑
i∈[n]

di(di − 1)

2m− 1
≈ 1

2

∑
i∈[n]

di(di − 1)

2m

=
ν

2
.

Similarly, for the events

τ ijs1t1,s2t2 = { s1 is paired with t1, s2 is paired with t2, sk ∈ vertex i, tk ∈ vertex j },

one has (the factor 1/2 in order not to count twice the edges from i to j and from j to i)

Mn ≤ 1

2

∑
1≤i ̸=j≤j

∑
1≤s1≤s2≤di

∑
1≤t1 ̸=t2≤dj

1τ ij
s1t1,s2t2

.

Here we have ≤ because the right hand side gives overestimate when, e.g., there are exactly three edges
between vertices i and j. Hence,

EMn ≤ 1

2

∑
i,j∈[n]

∑
1≤s1≤s2≤di

∑
1≤t1 ̸=t2≤dj

P(τ ijs1t1,s2t2)

=
1

4

∑
i,j∈[n]

di(di − 1)dj(dj − 1)

(2m− 1)(2m− 3)
≈

≈ ν2

4
.

�

As a simple corollary of the last proposition we have that, provided ν is fixed and n → ∞, the
proportion of the self-loops and multiple edges approaches zero. This can be used to prove the following
important theorem:

Theorem 4.2. Let P
(er)
k be the proportion of vertices of degree k in the configuration model after self-

loops and multiple edges are erased, and pk be the degree distribution of D = dU , where U is a uniform
random variable. Then for any ϵ > 0

P
( ∞∑
k=1

|P (er)
k − pk| ≥ ϵ

)
→ 0.

Moreover, it can be proved, using the method of moments, that the pair of the random variables
(Sn,Mn) converges to two independent random variables with the Poisson distribution with the param-
eters ν/2 and ν2/4 respectively. This fact has a remarkable corollary that

Corollary 4.3. Probability that there are no self loops and multiple edges in a realization of the config-
uration model is given by

P({G(n,d) is simple}) = e−ν/2−ν2/4(1 + o(1)).

Therefore, the number of simple graphs in G(n,d) can be approximated as

e−ν/2−ν2/4 (2m− 1)!!∏
i di!

(1 + o(1)).

Problem 4.6. Use the last formula to approximate the number of r-regular simple graphs.
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4.2.2 Excess degree distribution. Generating functions for the configuration
model. Diameter and the size of the giant component

Let (pk)
∞
k=0 be the degree distribution of the random variable D defined on G(n,d). For the following we

assume that two first moments ED and ED2 are finite. The probabilities pk answer the question “What
is the probability that randomly picked vertex has degree k?” Now let us ask another question: Assume
that we randomly pick a vertex and assume also that this vertex has degree bigger than zero. We choose
any of the edges incident to this vertex and along this edge we approach another vertex, a neighbor of the
initially chosen node. Here is the question: What is the probability that this randomly chosen neighbor
has degree k? After a thought it should be clear that these probabilities has to be different from (pk)k≥0,
because, for instance, we already know for sure that our vertex has degree at least one, and hence any
non-zero p0 will be at odds with this fact. To answer this question we note that there are k half-edges
along which we can approach a neighbor of degree k, the total number of half-edges is 2m − 1, and the
total number of such neighbors in the network is nk, hence

knk

2m− 1
≈ nkpk

2m
=
kpk
ED

is the probability that a randomly chosen neighbor of a randomly chosen vertex in the configuration
model has degree k. Note that it sums, how it should, to one, if you go from k = 1 to ∞. Let us see a not
very obvious aspect of this distribution: To find the expectation of this distribution, we need to evaluate

∞∑
k=1

k
kpk
ED

=
ED2

ED
≥ ED,

where the last inequality follows, for instance, from 0 ≤ VarD = ED2−(ED)2. This proves that on average
a neighbor has higher degree: “Your friend has more friends than you.” This may look counterintuitive,
but actually is the consequence of the fact that it is much higher chance to pick an edge that ends up
at a vertex of high degree than to pick up a lonely edge of a vertex degree 1, and of the set up of the
configuration model in which all pairing are uniformly random (this is not true for real world networks,
where we should often expect some correlations between vertices).

Now consider degree of a randomly chosen neighbor of a randomly picked vertex minus one (i.e., we
do not count the edge along which we approach our neighbor). This is called the excess degree. The
probabilities that excess degree is exactly k will be denoted qk. We have, from the previous,

qk =
(k + 1)pk+1

ED
,

because we do not count one of the half-edges. (qk)
∞
k=0 is called the excess degree distribution or, some-

times, size-biased distribution.
Define the generating functions of the degree distribution and excess degree distribution:

φ0(s) =

∞∑
k=0

pks
k,

φ1(s) =
∞∑
k=0

qks
k.

First note that if we know φ0(s) then we also know φ1(s):

φ1(s) =
∞∑
k=0

(k + 1)pk
ED

sk =
1

ED

∞∑
k=1

kpks
k−1 =

φ′
0(s)

φ′
0(1)

,

since ED = φ′
0(1).
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Problem 4.7. Show that φ0(s) ≡ φ1(s) if and only if D ∼ Poisson (λ).

Now, using the generating functions, we can calculate probabilities that there are k neighbors at the
distance l. Let us start with l = 2, i.e., how many neighbors at the distance 2 a randomly chosen vertex
in the configuration model has. Denote

p
(2)
k = P({a vertex has k second neighbors}).

We have the generating function for p
(2)
k :

φ(2)(s) =
∞∑
k=0

p
(2)
k sk =

∞∑
k=0

∞∑
j=0

pj P(k | j)sk,

where P(k | j) is the conditional probability that there are k second neighbors provided that there are j
first neighbors (with probability pj). Further, using the property that the generating function of a sum
of independent random variables is equal to the product of the generating functions, we obtain

φ(2)(s) =
∞∑
j=0

pj

∞∑
k=0

P(k | j)sk =
∞∑
j=0

pj(φ1(s))
j = φ0(φ1(s)).

Here I have used the fact that for each first neighbor the number of second neighbors is defined by the
excess degree distribution with the generating function φ1(s), and there are exactly j of these neighbors,
hence the total number of the second neighbors is defined by the sum of random variables with excess
degree distribution. Here you can also see what kind of mistake we make in these calculations: The second
neighbors can be counted several times depending on to how many first neighbors they are adjacent. For
large n and short distances however, this error is negligible.

Similarly, we can find (fill in the details) that

φ(l)(s) = φ(l−1)(φ1(s)).

Let us find the average number of neighbors at the distance l, which I denote ρl. We have

d

ds
φ(l)(s)

∣∣∣∣
s=1

=
d

ds
φ(l−1)(φ1(s))|s=1φ

′
1(s)|s=1,

or

ρl = ρl−1φ
′
1(1) = ρl−1

ED2 − ED

ED
.

Plus we would need the initial condition ρ1 = ED. Finally, denoting ν = (ED2 − ED)/ED,

ρl = νl−1 ED.

We have a very important conclusion: The number of neighbors at the distance l is growing if and only if
ν > 1 and decreasing if ν < 1. This is actually the condition for the appearance of the giant component:

ν > 1 =⇒ ED2 − 2ED > 0.

Moreover, we cannot have more neighbors than the total number of vertices n. This suggests that the
diameter of the configuration model is given by the expression

νl = n =⇒ l =
log n

log ν
.

To find the size of the giant component, let us use again heuristic derivation similar to the one
used when we discussed the Erdős–Rényi random graph. A randomly picked vertex does not belong to
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the giant component if and only if none of its neighbors belong to the giant component. Define u as
the probability that a vertex is not connected to the giant component through its neighbors. If this
vertex has k neighbors, then uk is the probability that it is not connected to the giant component, and∑

k pku
k = φ0(u) is the probability that this vertex does not belong to the giant component, hence

v = 1− φ0(u)

is the equation for the fraction of the nodes that are in the giant component. To find u let us reason
in a similar way. The probability that a vertex is not connected to the giant component through any
of its neighbors equal the average of the probabilities that none of the neighbors connected to the giant
component through their neighbors, or u =

∑
k qku

k = φ1(u). Therefore, finally we have

v = 1− φ0(u), u = φ1(u). (4.1)

Problem 4.8. Show that the last equation has a positive root 0 < u < 1 if and only if

ν =
ED2 − ED

ED
> 1.

Problem 4.9. Assume that we have a network whose vertices have degrees only 0, 1, 2, 3 with probabilities
p0, p1, p2, p3. Show that u = p1/(3p3) is the solution to u = φ1(u) when the giant component exists. Show
that the size v of the giant component actually depends on all the probabilities pi and find explicit solution.

4.2.3 Configuration model with the power law distribution

As an illustration of the obtained results consider the degree sequence d, which follows the discrete power
law:

pk = Ck−α, k ≥ 1,

where C is a normalization constant, which can be calculated as

C =
1

ζ(α)
, ζ(α) =

∞∑
k=1

k−α.

We calculate

ED =
∞∑
k=1

kpk =
ζ(α− 1)

ζ(α)
,

and

ED2 =
∞∑
k=1

k2pk =
ζ(α− 2)

ζ(α)
.

Therefore, the condition for the existence of the giant component becomes

ζ(α− 2) > 2ζ(α− 1),

which becomes true only if α < 3.4788. This result will change if one considered any power law distribution
with behavior that is different from the power law for small values of k, however, we still can get a general
result.

Recall that if 2 < α ≤ 3 then ED2 does not exits (the corresponding series diverges), hence the
condition

E(D)2 > ED.

is true for any power law distribution, therefore there exists the giant component.
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If the specific form of the power law is given then we can calculate the size of the giant component.
For the pure power law one has

φ0(s) =
Liα(s)

ζ(s)
, φ1(s) =

Liα−1(s)

sζ(s)
,

where

Liα(s) =
∞∑
k=1

k−αsk

is the polylogarithm function. Now we have

u = φ1(u) =⇒ u = 0

if α ≤ 2 since ζ(α − 1) diverges in this case. Therefore, v = 1 − φ0(0) = 1 − p0 = 1 because we assume
that p0 = 0 (there are no isolated vertices), and hence the giant component coincides with the whole
network whp.

4.2.4 Relation of G(n,w) and G(n,d)
to be added

Problem 4.10. Prove that in the configuration model G(n,d) the global clustering coefficient tends to
zero as n→ ∞.

Problem 4.11. Assume that we have a network whose vertices have degrees only 0,1,2,3 with proba-
bilities p0, p1, p2, p3. Show that the probability u that a randomly picked vertex does not belong to the
giant component of the configuration model is given by u = p1/(3p3), when the giant component exists.
Find the size of the giant component in this case.

Problem 4.12. Consider the configuration model with the exponential degree distribution

pk = (1− e−λ)e−λk

with λ > 0.
Find the condition for the giant component to exist and the size of the giant component.

Problem 4.13. Can you give any heuristic arguments that the configuration model is a small world?
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